/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Comments on
Mandatory

/v 6 Huenry Hueffman
@HenryHoffman

AARHUS UNIVERSITET | fucked up Git so bad it turned into

Guitar Hero

/v

State Pattern

AARHUS UNIVERSITET
« The point about ZetaStone was reuse ©
_ COI‘reCt state pattern public class ZetaWinningStrategy implements WinningStrategy {
private GameState currentState;
Player getWinner(Game game) {
int roundNumber = game.getTurnNumber();
I bUt if (roundNumber >) {
« Each of the currentState = new LateGameState();
State’s are else if (roundNumber > 6) {
SOUfCG'COde'COpy currentState = new MidGameState():
* Not reUSing the cur tState = new EarlyGameState():

WinnerStrategy but
recoding it

‘rentState.getWinner (game);
public interface GameState {

Player getWinner(Game game);

CS@AU Renrik Baerbak Christensen 3

/v Abstract Factory

AARHUS UNIVERSITET
« Family of objects

[13.1] Design Pattern: Abstract Factory

Intent Provide an interface for creating families of related or dependent ob-
jects without specifying their concrete classes.

Problem |Families of related objects need to be instantiated. Product variants
need to be consistently configured.

Solution Define an abstraction whose responsibility it is to create families of ob-
jects. The client delegates object creation to instances of this abstraction.

« Consider: Game needs a Deck of cards
— One feasible Strategy is to ‘List<Card> createDeck(...)’

CS@AU Henrik Baerbak Christensen 4

/v Abstract Factory

AARHUS UNIVERSITET
« Family of objects

[13.1] Design Pattern: Abstract Factory

Intent Provide an interface for creating families of related or dependent ob-
jects without specifying their concrete classes.

Problem Families of related objects need to be instantiated. Product variants]

need to be consistently configured.

s)

Solution Define an abstraction whose responsibility it is to create families of ob-
jects. The client delegates object creation to instances of this abstraction.

« Alpha Factory creates DeckBuildStrategy creates Deck

« Alpha Factory creates Deck
— Avoiding the Strategy?

CS@AU Henrik Baerbak Christensen 5

/v Compositional Design

AARHUS UNIVERSITET
« S0 compositional design thinking often leads to Design

Patterns
— And sometimes it is another one that you think

 If you have HeroBuildingStrategy and
DeckBuildingStrategy
— (As | have)

« Then they are more like a ‘Abs Factory’ than ‘Strategy’
— And can probably be removed and replaced by your factory
— (I have been lazy and have not done so.)

VeV Test Stub

AARHUS UNIVERSITET

« The ‘pick random minion’ is a responsibility which must
be encapsulated in a role via an interface and can be
played by two objects
— The real random object production code
— The stubbed object test code

 How to configure EpsilonStone to use the proper object?

* Analysis
— Creating an object to generate random indices is a part of the
HotStone configuration — and should be in the Abs Factory

/v Configuring Epsilon

AARHUS UNIVERSITET

» Tedious to create a new Java file with just that one minor
change compared to normal Epsilon
— Class TestEpsilonFactory extends EpsilonFactory { ... }

* You can use ‘anonymous classes’ instead...

/v

AARHUS UNIVERSITET
* ... In place overwriting a method

public class TestEpsilonStone {
private Game game;
private FixedIndexStrategy indexStrategy;

@BeforeEach
public void setUp() {
indexStrategy = new FixedIndexStrategy():
class TestEpsilonStoneFactory extends EpsilonStoneFactory {
@0verride
public HeroStrategy setUpHeroStrategy() { return new FrenchAndItalianHeroStrategy(indexStrategy);

game = new StandardHotStoneGame(new TestEpsilonStoneFactory());

» Critique: Methods should be called ‘create...” or similar

CS@AU Henrik Baerbak Christensen

