
Software Engineering

and Architecture

Comments on

Mandatory

☺

CS@AU Henrik Bærbak Christensen 2

State Pattern

• The point about ZetaStone was reuse ☺

– Correct state pattern

– … but

• Each of the

State’s are

source-code-copy

• Not reusing the

WinnerStrategy but

recoding it

CS@AU Henrik Bærbak Christensen 3

Abstract Factory

• Family of objects

• Consider: Game needs a Deck of cards

– One feasible Strategy is to ‘List<Card> createDeck(…)’

CS@AU Henrik Bærbak Christensen 4

Abstract Factory

• Family of objects

• Alpha Factory creates DeckBuildStrategy creates Deck

• Alpha Factory creates Deck

– Avoiding the Strategy?

CS@AU Henrik Bærbak Christensen 5

Compositional Design

• So compositional design thinking often leads to Design

Patterns

– And sometimes it is another one that you think

• If you have HeroBuildingStrategy and

DeckBuildingStrategy

– (As I have)

• Then they are more like a ‘Abs Factory’ than ‘Strategy’

– And can probably be removed and replaced by your factory

– (I have been lazy and have not done so.)

CS@AU Henrik Bærbak Christensen 6

Test Stub

• The ‘pick random minion’ is a responsibility which must

be encapsulated in a role via an interface and can be

played by two objects

– The real random object production code

– The stubbed object test code

• How to configure EpsilonStone to use the proper object?

• Analysis

– Creating an object to generate random indices is a part of the

HotStone configuration – and should be in the Abs Factory

CS@AU Henrik Bærbak Christensen 7

Configuring Epsilon

• Tedious to create a new Java file with just that one minor

change compared to normal Epsilon

– Class TestEpsilonFactory extends EpsilonFactory { … }

• You can use ‘anonymous classes’ instead…

CS@AU Henrik Bærbak Christensen 8

Ala…

• ... In place overwriting a method

• Critique: Methods should be called ‘create…’ or similar
CS@AU Henrik Bærbak Christensen 9

